Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(6)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36980190

RESUMO

Type 2 diabetes (T2D) is a metabolic disorder characterized by loss of pancreatic ß-cell function, decreased insulin secretion and increased insulin resistance, that affects more than 537 million people worldwide. Although several treatments are proposed to patients suffering from T2D, long-term control of glycemia remains a challenge. Therefore, identifying new potential drugs and targets that positively affect ß-cell function and insulin secretion remains crucial. Here, we developed an automated approach to allow the identification of new compounds or genes potentially involved in ß-cell function in a 384-well plate format, using the murine ß-cell model Min6. By using MALDI-TOF mass spectrometry, we implemented a high-throughput screening (HTS) strategy based on the automation of a cellular assay allowing the detection of insulin secretion in response to glucose, i.e., the quantitative detection of insulin, in a miniaturized system. As a proof of concept, we screened siRNA targeting well-know ß-cell genes and 1600 chemical compounds and identified several molecules as potential regulators of insulin secretion and/or synthesis, demonstrating that our approach allows HTS of insulin secretion in vitro.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Humanos , Animais , Camundongos , Insulina/metabolismo , Secreção de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ensaios de Triagem em Larga Escala , Insulina Regular Humana/metabolismo
2.
Cell Rep ; 42(2): 112114, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790933

RESUMO

BK polyomavirus (BKPyV) is an opportunistic pathogen that uses the b-series gangliosides GD1b and GT1b as entry receptors. Here, we characterize the impact of naturally occurring VP1 mutations on ganglioside binding, VP1 protein structure, and virus tropism. Infectious entry of single mutants E73Q and E73A and the triple mutant A72V-E73Q-E82Q (VQQ) remains sialic acid dependent, and all three variants acquire binding to a-series gangliosides, including GD1a. However, the E73A and VQQ variants lose the ability to infect ganglioside-complemented cells, and this correlates with a clear shift of the BC2 loop in the crystal structures of E73A and VQQ. On the other hand, the K69N mutation in the K69N-E82Q variant leads to a steric clash that precludes sialic acid binding. Nevertheless, this mutant retains significant infectivity in 293TT cells, which is not dependent on heparan sulfate proteoglycans, implying that an unknown sialic acid-independent entry receptor for BKPyV exists.


Assuntos
Vírus BK , Polyomavirus , Vírus BK/genética , Vírus BK/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polyomavirus/genética , Polyomavirus/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Gangliosídeos/metabolismo
3.
Cells ; 11(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35053407

RESUMO

Type 2 diabetes is characterized by chronic hyperglycemia associated with impaired insulin action and secretion. Although the heritability of type 2 diabetes is high, the environment, including blood components, could play a major role in the development of the disease. Amongst environmental effects, epitranscriptomic modifications have been recently shown to affect gene expression and glucose homeostasis. The epitranscriptome is characterized by reversible chemical changes in RNA, with one of the most prevalent being the m6A methylation of RNA. Since pancreatic ß cells fine tune glucose levels and play a major role in type 2 diabetes physiopathology, we hypothesized that the environment, through variations in blood glucose or blood free fatty acid concentrations, could induce changes in m6A methylation of RNAs in pancreatic ß cells. Here we observe a significant decrease in m6A methylation upon high glucose concentration, both in mice and human islets, associated with altered expression levels of m6A demethylases. In addition, the use of siRNA and/or specific inhibitors against selected m6A enzymes demonstrate that these enzymes modulate the expression of genes involved in pancreatic ß-cell identity and glucose-stimulated insulin secretion. Our data suggest that environmental variations, such as glucose, control m6A methylation in pancreatic ß cells, playing a key role in the control of gene expression and pancreatic ß-cell functions. Our results highlight novel causes and new mechanisms potentially involved in type 2 diabetes physiopathology and may contribute to a better understanding of the etiology of this disease.


Assuntos
Adenosina/análogos & derivados , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , RNA/metabolismo , Adenosina/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Metilação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Palmitatos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Mol Omics ; 16(4): 345-354, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32270793

RESUMO

Macrophage glycosylation is essential to initiate the host-immune defense but may also be targeted by pathogens to promote infection. Indeed, the alteration of the cell-surface glycosylation status may affect the binding of lectins involved in cell activation and adhesion. Herein, we demonstrate that infection by M. bovis BCG induces the remodeling of the N-glycomes of both human primary blood monocyte-derived macrophages (MDM) and macrophage-cell line THP1. MALDI-MS based N-glycomic analysis established that mycobacterial infection induced increased synthesis of biantennary and multifucosylated complex type N-glycans. In contrast, infection of macrophages by M. bovis BCG did not modify the glycosphingolipids composition of macrophages. Further nano-LC-MSn glycotope-centric analysis of total N-glycans demonstrated that the increased fucosylation was due to an increased expression of the Lex (Galß1-4[Fucα1-3]GlcNAc) epitope, also known as stage-specific embryonic antigen-1. Modification of the surface expression of Lex was further confirmed in both MDM and THP-1 cells by FACS analysis using an α1,3-linked fucose specific lectin. Activation with the mycobacterial lipopeptide Pam3Lp19, an agonist of toll-like receptor 2, did not modify the overall fucosylation pattern, which suggests that the infection process is required to modify surface glycosylation. These results pave the way toward the understanding of infection-triggered cell-surface remodeling of macrophages.


Assuntos
Vacina BCG/imunologia , Glicômica , Interações Hospedeiro-Patógeno , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/metabolismo , Vacina BCG/administração & dosagem , Células Cultivadas , Citocinas/metabolismo , Epitopos/metabolismo , Glicômica/métodos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Mycobacterium bovis/imunologia , Polissacarídeos/química , Polissacarídeos/metabolismo , Células THP-1 , Tuberculose/prevenção & controle
5.
PLoS One ; 13(4): e0196369, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29698439

RESUMO

Gangliosides are glycosphingolipids concentrated in glycolipid-enriched membrane microdomains. Mainly restricted to the nervous system in healthy adult, complex gangliosides such as GD3 and GD2 have been shown to be involved in aggressiveness and metastasis of neuro-ectoderm derived tumors such as melanoma and neuroblastoma. GD3 synthase (GD3S), the key enzyme that controls the biosynthesis of complex gangliosides, was shown to be over-expressed in Estrogen Receptor (ER)-negative breast cancer tumors, and associated with a decreased overall survival of patients. We previously demonstrated that GD3S expression in ER-negative breast cancer cells induced a proliferative phenotype and an increased tumor growth. In addition, our results clearly indicate that Tumor Necrosis Factor (TNF) induced GD3S over-expression in breast cancer cells via NFκB pathway. In this study, we analyzed the effect of TNF on ganglioside biosynthesis and expression in breast cancer cells from different molecular subtypes. We showed that TNF up-regulated the expression of GD3S in MCF-7 and Hs578T cells, whereas no change was observed for MDA-MB-231. We also showed that TNF induced an increased expression of complex gangliosides at the cell surface of a small proportion of MCF-7 cells. These results demonstrate that TNF differentially regulates gangliosides expression in breast cancer cell lines and establish a possible link between inflammation at the tumor site environment, expression of complex gangliosides and tumor development.


Assuntos
Gangliosídeos/biossíntese , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ácidos Graxos/química , Feminino , Gangliosídeos/análise , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Células MCF-7 , Microscopia de Fluorescência , Sialiltransferases/genética , Sialiltransferases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
J Proteome Res ; 16(1): 156-169, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27351377

RESUMO

The human acute monocytic leukemia cell line THP-1 is widely used as an in vitro phagocytic cell model because it exhibits several immune properties similar to native monocyte-derived macrophages. In this study, we investigated the alteration of N- and O-linked glycans as well as glycosphingolipids, during THP-1 differentiation, combining mass spectrometry, flow cytometry, and quantitative real-time PCR. Mass spectrometry revealed that macrophage differentiation led to a marked upregulation of expression of GM3 ganglioside as well as an increase in complex-type structures, particularly triantennary glycans, occurring at the expense of high-mannose N-glycans. Moreover, we observed a slight decrease in the proportion of multifucosylated N-glycans and α2,6-sialylation. The uncovered changes in glycosylation correlated with variations of gene expression of relevant glycosyltransferases and glycosidases including sialyltransferases, ß-N-acetylglucosaminyltransferases, fucosyltransferases, and neuraminidase. Furthermore, using flow cytometry and antibodies directed against glycan structures, we confirmed that the alteration of glycosylation occurs at the cell surface of THP-1 macrophage-like cells. Altogether, we established that macrophagic maturation of THP-1 induces dramatic modifications of the surface glycosylation pattern that may result in differential interaction of monocytic and macrophagic THP-1 with immune or bacterial lectins.


Assuntos
Diferenciação Celular/imunologia , Glicoesfingolipídeos/química , Macrófagos/química , Monócitos/química , Polissacarídeos/química , Configuração de Carboidratos , Sequência de Carboidratos , Linhagem Celular , Fucosiltransferases/genética , Fucosiltransferases/imunologia , Gangliosídeo G(M3)/química , Gangliosídeo G(M3)/imunologia , Regulação da Expressão Gênica , Glicoesfingolipídeos/imunologia , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/imunologia , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Manose/química , Manose/imunologia , Monócitos/citologia , Monócitos/imunologia , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/imunologia , Neuraminidase/genética , Neuraminidase/imunologia , Polissacarídeos/imunologia , Ácidos Siálicos/química , Ácidos Siálicos/imunologia , Sialiltransferases/genética , Sialiltransferases/imunologia
7.
Int J Mol Sci ; 17(8)2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27529215

RESUMO

The ST6GALNAC5 gene that encodes an α2,6-sialyltransferase involved in the biosynthesis of α-series gangliosides, was previously identified as one of the genes that mediate breast cancer metastasis to the brain. We have shown that the expression of ST6GALNAC5 in MDA-MB-231 breast cancer cells resulted in the expression of GD1α ganglioside at the cell surface. By using a human blood-brain barrier in vitro model recently developed, consisting in CD34⁺ derived endothelial cells co-cultivated with pericytes, we show that ST6GALNAC5 expression decreased the interactions between the breast cancer cells and the human blood-brain barrier.


Assuntos
Barreira Hematoencefálica/metabolismo , Neoplasias da Mama/metabolismo , Sialiltransferases/metabolismo , Animais , Antígenos CD34/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Gangliosídeo G(M1)/análogos & derivados , Gangliosídeo G(M1)/metabolismo , Humanos , Camundongos , Pericitos/metabolismo , Sialiltransferases/genética
8.
Molecules ; 20(4): 6913-24, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25913930

RESUMO

α-Series gangliosides define a particular sub-class of glycosphingolipids containing sialic acid α2,6-linked to GalNAc residue that was isolated as a minor compound from the brain. The sialyltransferase ST6GalNAc V was cloned from mouse brain and showed α2,6-sialyltransferase activity almost exclusively for GM1b, to form GD1α and is considered as the main enzyme involved in the biosynthesis of α-series gangliosides. Recently, ST6GALNAC5 was identified as one of the genes over-expressed in breast cancer cell populations selected for their ability to produce brain metastasis. However, the capacity of human breast cancer cells to produce α-series gangliosides has never been clearly demonstrated. Here, we show by stable transfection and MS-MS analysis of total glycosphingolipids that ST6GALNAC5 expressing MDA-MB-231 breast cancer cells accumulate GD1α ganglioside (IV3Neu5Ac1, III6Neu5Ac1Gg4-Cer).


Assuntos
Neoplasias da Mama/metabolismo , Gangliosídeo G(M1)/análogos & derivados , Sialiltransferases/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Gangliosídeo G(M1)/metabolismo , Humanos , Espectrometria de Massas/métodos , Sialiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...